
Proceedings of Informing Science & IT Education Conference (InSITE) 2014
Cite as: Stolze, T. & Kramer, K-D. (2014). Runtime optimization of generated code Proceedings of Informing Science
& IT Education Conference (InSITE) 2014 (pp. 313-322). Retrieved from
http://Proceedings.InformingScience.org/InSITE2014/InSITE14p313-311Stolze0698.pdf

Reviews conducted by the International Institute of Informatics and Systemics (IIIS)

Runtime Optimization of Generated Code
Thomas Stolze and Klaus-Dietrich Kramer

Department of Automation and Computer Science, Harz
University, Wernigerode, Germany

tstolze@hs-harz.de kkramer@hs-harz.de

Abstract
CASE-Tools are state-of-the-art when code has to be generated out of a software model. They
offer high flexibility and sophisticated usability. Time savings in software development are huge
compared to traditional programming techniques, and lower production times lead to lower costs.
Many applications require real time processing. But real time demands are quite difficult to han-
dle with CASE tools. There are too many constraints and only a limited number of them can be
processed by the tools. Therefore, the following approaches deal with runtime optimization of
generated code. Starting with the current situation successive methods how to optimize code for
real time requirements are shown.

Keywords: code generation, Matlab/Simulink, code optimization, real time, performance

Introduction / Motivation
The software engineering process is shaped by so-called CASE-Tools (Computer Aided Software
Engineering Tools), especially in order to program Embedded Systems. Among many other soft-
ware products Matlab/Simulink (Mathworks, 1997) in combination with dSPACE (dSPACE
GmbH, 2003a, 2003b) is one possible tool chain. These CASE-Tools support engineers while
developing their products by providing flexible possibilities to design, to simulate and to test sys-
tems. When tested successfully the tools help to port the code to an underlying embedded hard-
ware device. Figure 1 illustrates typical steps when developing Software with CASE tools – here
with Matlab/Simulink and dSpace. But the figure should be seen as a general procedure. The
hardware interactions of this development process are marked green (right side / bottom) while
the software development is printed in blue color (left side). The distinctiveness of this procedure
is the early interaction of the Simulink model and the dSpace hardware system for testing purpos-
es. With the help of dSPACE simulated results can be tested with the real hardware, even before
the first line of code is generated for the target hardware system, e.g., a microcontroller.

The resulting high degree of flexibility is appreciated by engineers. They are able to run simula-
tions and tests with real hardware like
dSPACE systems. But this flexibility
often rivals with real time demands
when trying to generate runtime-
optimized code out of a simulation
model. Because of the automated ap-
proach generating code for certain
hardware architecture and optimizing its
runtime at the same time is limited. The
huge amount of constraints makes it
impossible to transfer all information to

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

http://proceedings.informingscience.org/InSITE2014/InSITE14p313-311Stolze0698.pdf
mailto:tstolze@hs-harz.de
mailto:kkramer@hs-harz.de
mailto:Publisher@InformingScience.org

Runtime Optimization of Generated Code

314

the CASE tools and to let the tools process them automatically. So, if real time restrictions cannot
be met by automatically generated code, a manual optimization is necessary.

Figire 1: Typical Software Development Process with Matlab/Simulink and dSpace

By means of the project "Chainless Bike" an optimization strategy for generated code can be pre-
sented which can be adapted to other projects as well. In the example the bike is driven electrical-
ly, but behaves like a classic bike. The electric power provided by a generator and an accumulator
is used by an electric motor at the rear for accelerating the bike. Because of the lack of the classic
chain a microcontroller can perfectly use all the resulting degrees of freedom when riding the
bike. Recuperation of braking energy is possible as well as stepless shifting. It is a product that
uses the software development process given in Figure 1. The Figure 2 shows a prototype of the
bike. It can be operated by a smart phone attached to the handlebars which communicates with a
microcontroller.

The project makes use of the tools Matlab/Simulink and the hardware dSPACE. For controlling
purposes (motor and generator control, user interaction, battery management) a microcontroller
from Infineon's XC2000 family is utilized. It provides suitable peripherals and is available as a
target controller in Matlab/Simulink which means code can be generated for it. To transfer the
code to its machine-executable form the Integrated Development Environment (IDE) Tasking VX
Toolset is used. To support the currents needed for riding the bike a special power amp circuit is

connected to the microcontroller.

Runtime Problems and
Optimization
Approaches

Methodology and
Preparations
Starting with the Simulink model of the
bike the so-called Real-Time Work-
shop, a tool from Simulink, is able to
transform the model into C code for the

Figure 2: Chainless Bike prototype (X-PESA)

Stolze & Kramer

315

microcontroller. Therefore, C code is generated from the blocks within the Simulink model. With
the help of Tasking VX Toolset it can be loaded onto the microcontroller. But the generated code
lacks of execution speed. That is why the sampling frequency for a stable control cannot be met,
and the control does not work on the microcontroller until optimized. In case of the bike an opti-
mization by a factor greater than 10 is required in order to get the cycle time from several milli-
seconds to a cycle time of less than 100 µs. A sampling frequency of at least 10 kHz has to be
achieved.

This problem also affects other projects which require certain sample times and make use of gen-
erated code. Generally speaking, the shorter the execution time of a control algorithm, the better
the quality and stability of the control. For solving this problem an exact analysis of the algorithm
runtimes and a classification of potentials of optimization are required. For a decision whether or
not to optimize certain parts of the model the cost of a particular optimization is crucial. The op-
timization should only be implemented if the optimization potential in relation to the costs for the
required changes is high enough. Therefore, the execution times of the parts of the control algo-
rithms have to be determined. When using a microcontroller this can easily be achieved by using
an oscilloscope and toggling a port pin. Using timers for measurement is not recommended since
necessary interrupt service routines may negatively affect the runtime. A big support is the Sim-
ulink report of the code generation which shows the Simulink blocks and their matching C code
counterparts.

Model Optimization
A general consideration has to be made which elements of the CASE tool model are essential for
the control and affect the sampling time on the microcontroller. All subsidiary elements (e.g., on-
ly implemented for testing and debugging) have to be deleted. Then the model is in an optimized
state. In conclusion, no unnecessary code can be generated. Especially in early project stages sev-
eral elements are often calculated in parallel because of testing purposes to determine which solu-
tion is the best one. So all but the best one can be deleted saving execution time by executing only
one code path.

Calculation Precision and Instruction Set
By knowing the characteristics of the preferred microcontroller some optimization potentials in
the CASE tool can be identified. In case of Simulink blocks using floating-point calculation may
be investigated to run with fixed-point arithmetic instead. It is not only the execution speed what
counts, but also the precision of the results. But the execution of floating-point code on a fixed-
point microcontroller may take a very long time due to the execution of software floating-point
libraries. Tests and maybe even benchmark comparisons can help to find out more. So if the pre-
cision is still high enough for the application this may be an alternative for microcontrollers with-
out floating-point unit.

The datasheet of the microcontroller also gives hints about execution times of certain instructions,
for example basic arithmetic operations. For the XC2000 for instance, the division takes 21 clock
cycles in order to finish (Infineon Technologies AG, 2012). On the opposite, an addition or mul-
tiplication does only take one clock cycle. Compared to this, a division is rather slow, and there-
fore it should be replaced by multiplications with fitted parameters and factors. Due to the lack of
a floating-point unit the transformation to fixed-point code with only a few divisions has a high
optimization potential for the XC2000 family. Despite this optimization is rather complex, the
code generation in the example case is able to convert multiplications and divisions by powers of
two into fast shift operations. The user can largely benefit from this if focussing on providing
suitable factors for calculation.

Runtime Optimization of Generated Code

316

Hand-optimized Code
Additional advantages in execution speed are given by C functions embedded in the CASE tool.
Hand-optimized Code may lead to shorter runtimes especially in encapsulated blocks without
having to deal with less flexibility. Simulink offers C functions for that kind of optimization. The
use of embedded code is also suitable for the implementation of alternative algorithms. In order to
ensure a certain speedup and also the correct execution of the code tests with these hand-written
code segments should be performed on the target hardware prior to implementing them in the
CASE tool.

Compiler Optimizations
There are lots of optimization potentials referring to the IDE. Chances of speeding up code can
primarily be found in compiler and linker settings. That is why there is also much research work
done, and some tools exist that enable the user to even examine worst case runtimes of their pro-
grams (Schwarzer, 2007). Many tools offer customized options for enabling or disabling certain
optimization options. For runtime-optimized code the tradeoff between code size and speed
should be consequently set to speed, although the resulting code may be larger. Additionally, the
optimization level should be set to high, but not every single optimization offered by the compiler
(e.g., function inlining, interprocedural register optimizations, loop transformations, etc.) may in
fact lead to faster code. By comparing different settings and customizing sub-selections of the
optimization options a best case can be found for the current project. A good starting point is a
common predefined set such as "-O2" or "-O3". That means that different compiler optimization
settings ("O") are combined when compiling the program. This is done with a certain level ("2" or
"3", where "3" is the highest level supported). So "-O2" or "-O3" are the resulting parameters.

Influence of Memories
When having optimized compiler settings a look at the linker settings is worth a try, too. Alt-
hough microcontrollers often place code in non-volatile Flash-ROM, sometimes there is a chance
of placing code in much faster RAM at runtime. After copying the code from flash ROM to RAM
at startup the code execution can be massively accelerated. Because unlike most flash ROMs
RAMs do not need waitstates when being addressed by a microcontroller, they do not slow down
code execution of the processor. Memory access times for comparison can be found in technical
datasheets or even in the IDE settings of the project, e.g., the number of waitstates for different
memories.

Parallelization
If processes have to run in parallel on the microcontroller an optimization is possible, too. But
unlike desktop processors, real multiprocessing and the use of threads is not widespread on mi-
crocontrollers. Here especially peripherals can execute their tasks while the CPU is calculating
something different. As an example, analogue-digital converters (ADCs) or communication inter-
faces (e.g., the Human Machine Interface, HMI) are able to perform tasks independently from the
CPU. A modified program flow can turn this advantage into shorter execution times of the whole
program by executing peripheral tasks in parallel. The CPU is not stalled until these tasks are fin-
ished.

Hardware Optimizations
Last but not least, it depends on the project if changes to the hardware are possible and useful.
Increasing clock speeds should only be performed within the limits set by the hardware manufac-
turer. Replacing hardware often means huge efforts which have to be justified by the benefits of

Stolze & Kramer

317

that exchange. There has to be awareness of additional costs, time and expenses for personnel.
Occasionally there are higher clocked derivatives of one hardware family available which are
even pin-compatible. In the example case the previously used XC2787 microcontroller can easily
be replaced by the XC2289. With minimal effort a clock speed of 128 MHz instead of only
100 MHz is available, accelerating code execution by 28 %. The peripherals and pin connections
remain nearly the same.

Implementation of Optimizations
The given example of the chainless bike offers initial optimizations by analysing the used Sim-
ulink model. All blocks not necessary for the control by the microcontroller are deleted. Further-
more, tests with fixed-point calculations have proven that there is no essential loss in precision
when using fixed-point calculations instead of floating-point calculations. The range of values is
completely used so that the loss in precision is minimized. This is achieved by adjusted factors.
The factors are also matched to use fast shift operations where possible. At the same time many
previously required saturations are now obsolete because the new factors prevent overflows and
underflows. Using this set of optimizations it is already possible to test the control with a sam-
pling frequency of 4 kHz. This shows the high potential of these first steps.

In addition, numerously used blocks which are built quite equally are substituted by hand-
optimized C functions. This especially concerns filter and square root calculations. The conven-
tionally used square root function "double sqrt(double)" from math.h library for example can be
replaced by a highly optimized fixed-point Heron algorithm which can be executed much faster
and delivers a convenient accuracy. The commonly used Heron algorithm follows this equation:

21









+

=+
n

n

n
x
ax

x (1)

Equation (1) shows that the algorithm contains two divisions, an addition and a multiplication.
Especially the division by two can be transformed to an arithmetic right shift by one. Remember-
ing the 21 cycles for divisions on the XC2000 this first division can now be executed in only one
cycle. Furthermore, the algorithm can be optimized by setting a start value for 0x of the iteration.
Moreover, some kind of loop unrolling is possible, too. The resulting code is given in Figure 3.

Runtime Optimization of Generated Code

318

Figure 3: Adapted Heron Algorithm

Stolze & Kramer

319

As shown in Figure 3 the adapted Heron Algorithm makes use of a preselection of the input val-
ues. By doing that, the algorithm can calculate results that are precise enough for the application
in only two calculation cycles (lines 36 to 42, no loop for iteration). The start value is therefore
preselected to meet the conditions of the short calculation. Standard implementations need much
more cycles to calculate valid results. The required data types are limited to long and integer for-
mats (32 Bit and 16 Bit in case of the XC2787 and XC2289). Therefore, Figure 4 shows an accu-
racy comparison of different Heron square root calculations.

Data Format for Al-
gorithm

Max. Deviation from
Long Double (80 Bit)

Double (64 Bit, sqrt()) 0.000

Float (32 Bit, sqrt()) 0.001

Long & Int (32 Bit and
16 Bit, fixed point
heron())

3.235

Figure 4: Max. deviation vs. data format comparing different data formats
to 80 Bit reference calculation

Although the calculation precision with long and integer data format is not as high as when calcu-
lating with float or double values, a maximum of 3.235 is the highest deviation occurring over the
whole long value input space. The accuracy is still high enough to perform the control algorithm
precisely. The overall time savings are quite high because the optimizations apply to many blocks
in Simulink. This fact is illustrated in the following figure. The listed times are measured
runtimes for the XC2787 operating at 100MHz and executing the program from Flash-ROM with
the -O3-compiler option turned on (Figure 5).

Data Format for Al-
gorithm

Time for Calculation

Long Double (80 Bit,
sqrt())

47,20 µs

Double (64 Bit, sqrt()) 43,60 µs

Float (32 Bit, sqrt()) 36,00 µs

Long and Int (32/16
Bit fixed point heron())

4,62 µs

Figure 5: Comparison of precisions and runtimes

The costs for the implementation are low so the hand-optimized Heron-algorithm is very effective
when implemented.

Various compiler optimizations also contribute to lower execution times. The settings are chosen
with regard to the predefined "-O3" setting, with some minor custom flags being set. Neverthe-
less, the explicit use of the so-called multiply-and-accumulate unit (MAC, a special hardware fea-
ture of microcontrollers (Infineon Technologies AG, 2006, 2007)) does not provide any benefits
for the runtime in this example. But several linker optimizations pay out well. By using special
sections parts of the code can be executed from RAM instead of flash ROM, and so the code can

Runtime Optimization of Generated Code

320

be executed faster. All things considered the linker optimizations made the code execute faster by
about 30%.

Further optimizations are taken – as described – by using peripherals of the microcontroller in
parallel to the normal code execution (see Figure 6). Despite of the single core architecture of the
XC2000 family the conversion of analogue values by the ADC and the communication can be
performed that way.

Figure 6: Parallel Execution of Peripheral Tasks

The time available for data exchange for the human machine communication is longer than the
spare time between two control cycles of the system. That is why the communication is executed
cycle-sequentially. That means a reference clock is derived from the control clock, and in each
pause between the end of the current and the beginning of the next control cycle a part of the
communication data is exchanged with the peripherals. After a certain period of time the commu-
nication data is transferred and new communication data can be processed. On the one hand this
methodology saves valuable processing time of the CPU, on the other hand an exact execution
timing of all software modules is guaranteed.

Altogether the optimizations enabled a sampling time of 101 µs. The times for performing the
data exchange with communication peripherals and saving converted ADC values do not add to
this time because they are processed between the control cycles. What remains is the substitution
of the XC2787 by the XC2289 derivative with 28 % higher clock speed. As expected the sam-
pling time is now about 73 µs which means the sampling time perfectly scales with the clock

Stolze & Kramer

321

speed. Also there is enough time left to do the communication data exchange and save the ADC
values. Figure 7 summarizes some selected optimizations and their effect on the runtime. Listing
all improvements achieved by the mentioned optimizations would go far beyond the scope of the
paper.

Optimization Time saved

Model Optimization,
Fixed Point
Artithmetic

several ms

Parallelization of
Peripheral Actions

28 µs

Adapted Heron Algo-
rithm (multiple issue)

17 µs

Optimized Filter Func-
tions (multiple issue)

ca. 56 µs

XC2289 vs. XC2787
(increased clock speed)

28 % of runtime

Code Execution RAM
vs. Flash-ROM

ca. 30 % of runtime

Figure 7: Runtime optimization summary

The model optimization and the change of the data format to fixed point had the highest impact
on runtime. Without that any other optimization would not have made sense. Several software
optimizations (Heron and filter functions) could be implemented quite easily and payed off well
due to the widespread use of them. The increased clock speed as well as the code execution from
RAM speeded up the whole program and were not limited to certain algorithms.

Now the sampling frequency can be raised to 10 kHz. This massively improves the quality of the
control and lets the bike run smoothly and silently.

Conclusions and Future Research
The example project shows how important the use of CASE tools is for engineers. In this context
specific optimization is significant although flexibility and test cases of the CASE tool are im-
portant, too. Starting with the software model the optimization approaches show how runtime-
optimized code can be produced. Therefore, widespread optimization steps of nearly every partic-
ipating component are necessary. The efforts are not negligible. That is why the goal for further
research should be the automation of the optimization processes. Because of project specific con-
straints this appears to be a huge challenge. A kind of plugin to the existing toolchain seems con-
ceivable that takes the optimization constraints from the user and implements them directly into
the generated code.

References
dSPACE GmbH. (2003a). dSPACE: Control Desk. Experiment Guide. dSPACE GmbH, Paderborn, Ger-

many.

dSPACE GmbH. (2003b). dSPACE: DS1103 PPC Controller Board. Installation and Configuration.
dSPACE GmbH, Paderborn, Germany.

Runtime Optimization of Generated Code

322

Infineon Technologies AG. (2006). Infineon Technologies: The Insider Guide to Planning XC166 Family
Designs. Infineon Technologies AG, Munich.

Infineon Technologies AG. (2007). Infineon Technologies: DSP Optimization Guide for XC2000, XE166
and XC166 Microcontroller Families with MAC Unit. Application Note 16113. Infineon Technologies
AG, Munich.

Infineon Technologies AG. (2012). Infineon Technologies: Data Sheet XC2288I, 2289I (Edition 2012-06,
p. 7-8). Infineon Technologies AG, Munich.

The Mathworks. (1997). The Mathworks: Using Matlab. [Software Manual].

Schwarzer, M. (2007). Untersuchung des Einflusses von Compiler-Optimierungen auf die maximale
Programmlaufzeit. Diploma Thesis, University of Dortmund, Department of Computer Science.

All names and brands are property of their respective owners.

Biographies
Dipl.-Ing. (FH) Thomas Stolze has been a research associate and lec-
turer in the Department of Automation and Computer Science, at Harz
University, Wernigerode, since 2008. His studies include Technical
Informatics, Harz University Wernigerode (Dipl.-Ing. FH) and Doctor-
ate at Technical University of Ilmenau. His research interests include
Benchmark development and system comparison, Microcontroller-,
DSP- and Microprocessor technologies and applications, system evalu-
ation.

Prof. Dr.-Ing. Klaus-Dietrich Kramer has been Professor for Micro-
processor Systems in the Department of Automation and Computer
Science at Harz University, Wernigerode, since 1998. He is also an
application Engineer in an engineering institute and lecturer at the In-
genieurschule Eisleben, Since 2004 he has been president of the Insti-
tute of Automation and Informatics (IAI) in Wernigerode. His studies
include Information Technology, Technical University of Dresden
(Dipl.-Ing.), Promotion (Dr.-Ing.) at Technical University of Ilmenau.
His research interests are Microcontroller applications, benchmarks for
Microcontrollers, Microprocessors and Digital Signal Processors, CI-
Applications (Fuzzy- Control and Low-Cost-MC, Real Time CI-
Systems, etc.), and Automotive applications.

	Runtime Optimization of Generated Code
	Thomas Stolze and Klaus-Dietrich Kramer Department of Automation and Computer Science, Harz University, Wernigerode, Germany
	tstolze@hs-harz.de kkramer@hs-harz.de

	Abstract
	Introduction / Motivation
	Runtime Problems and Optimization Approaches
	Methodology and Preparations
	Model Optimization
	Calculation Precision and Instruction Set
	Hand-optimized Code
	Compiler Optimizations
	Influence of Memories
	Parallelization
	Hardware Optimizations

	Implementation of Optimizations
	Conclusions and Future Research
	References
	Biographies

